Platform Laboratory for Science & Technology

Our Platform Laboratory for Science & Technology is a critical resource that delivers practical and implementable solutions to real industrial problems, with expertise in state-of-the-art instrumental analysis and theory-oriented computational simulations. We constantly strive to extend the frontiers of the wide range of analytical methodologies we employ, keeping an open mind for innovation, and advancing collaboration with leading researchers around the world.

As the world faces growing challenges related to the environment, energy, and aging populations, Japan will play a leading role in the development of solutions based on advanced materials and efficient production processes. Analytical technology is the key that enables the power of science to be applied for the achievement of sustainability for the future.

In-situ measurement technology

One notable example of an Asahi Kasei product that addresses environmental and energy issues is the Hebel™ series of autoclaved aerated concrete panels for exterior walls featuring superior strength, insulation, and extended durability. Although the manufacturing method was established many years earlier, there had not been a clear understanding of the curing process of pulverized silica stone within large industrial-scale autoclaves, especially from the perspective of kinetics. To elucidate the reaction process scientifically, we applied the synchrotron radiation (SR) in-situ measurement technique and successfully observed changes in the crystal phases as the curing process proceeds. The study revealed that several intermediate phases play a decisive role in determining the strength and durability of the product material.

Particular expertise was required to develop a small observation cell suited to in-situ measurement, and to reproduce the phenomena in a real-world industrial process. We apply similar techniques to various proprietary organic and inorganic products.

  • In-situ measurement of the reaction in the autoclave (change in XRD profile over time)

Optical simulation technology

Optical materials make our life convenient and colorful in many ways. Various optical properties are achieved with fine surface structural patterns or textures whose feature size is smaller than the wavelength of visible light. Materials with such fine surface structures are assembled into large devices up to several meters in scale.

Jointly with Ohio State University, we developed several approaches to simulate optical properties on a real-world scale based on the fine surface structural patterns and intrinsic material properties.

  • Surface profile of diffusion control film (AFM)

  • Surface profile of ultra-fine pattern (SEM)

  • Large-scale optical simulation by DDM method

Best practices in advanced analytical technologies

In-situ X-ray analysis using synchrotron radiation (SR)

High temperature, high pressure reactions in real-world production processes can be reproduced using a reaction cell we developed in house, casting light on various black-box phenomena occurring in industrial production processes. This technology has been recognized with the Japan Cement Association Article Award 2014, the Hyogo SPring-8 Award 2011, and the Advanced Analytical Technology Award 2010 from the Japan Society for Analytical Chemistry.

Structural analysis and fluid dynamics simulations of microporous materials

Scanning electron microscopy observation, theoretical modeling, and optimization techniques are combined to reproduce fluid dynamics phenomena with microporous materials, enabling engineering solutions for novel high-performance filtration systems. This technology has been recognized with the Technology Award 2004 from the Japanese Society for Artificial Organs.

Application of electron microscopy and surface analysis spectroscopy

Surface analysis techniques such as STEM, XPS, and SIMS are coupled with first-principle theoretical simulations elucidating the interpretation of spectra profiles and yielding information about the underlying atomistic alignment.

NMR analysis of ionic species transport

Nonuniform and complex ion diffusion phenomena in porous battery materials are directly related to battery power characteristics. Comprehensive understanding is made possible through individual molecular level evaluation of the ion diffusion by pulsed field gradient NMR in combination with detailed porous structure analysis by x-ray scattering method and 3D electron microscopy, together with diffusion simulation techniques. These analyses contribute to the understanding of battery performance phenomena as well as material development.

Structural analysis of soft materials with SR SAXS

Our advanced techniques enable the practical observation of structures on the scale of several hundred nm, as well as in-situ observation of structure formation processes. This technology has been recognized with the Horie Award 2014 from the Advanced Softmaterial Beamline Consortium.

Multi-physics polymer simulation (OCTA)

We jointly developed OCTA, a meso-scale multi-physics simulation system for the modeling and design of materials such as separation membranes, films, and textile fibers. This technology has been recognized with the Technology Award 2002 from the Society of Rheology Japan. In 2014, The Chemical Daily Co., Ltd. published Polymer Material Simulation: OCTA Application Cases in Japanese.