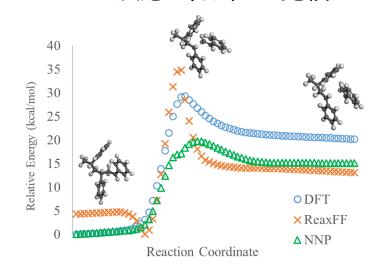

Asahi **KASEI**

全原子MDによるポリスチレンの解重合シミュレーション



Neural Network Potential (NNP)およびReaxFFを用いたMDシミュレーションで、ポリスチレンの解重合をシミュレート可能か検証した。 反応エネルギーが低いNNP-MDを用いることで、短い時間スケールであっても解重合をシミュレートできること、副生成物量も実験と整合することを明らかにした。一方、反応エネルギーが高いReaxFFではほとんど分解が進行しなかった。このため、ReaxFFで分解を起こすためには、ポテンシャル形状を維持しつつ、反応エネルギーを低下させる必要があることもわかった。

全体のイメージ

反応エネルギーの比較

生成物量の比較

	Experiment			NNP-MD	ReaxFF-MD
Pyrolysis products	1,073 K	1,173 K	1,248 K	1,200 K	1,200K
styrene (monomer)	78.4	75.4	70.0	72.7	3.2
dimer	1.9	0.4	0.2	0.4	0.0
trimer	1.3	0.5	0.1	2.4	0.0
toluene	0.9	1.4	2.1	1.4	0.0
ethylbenzene	0.3	0.6	0.6	1.2	0.2
α-methylstyrene	0.9	0.9	1.1	0.2	0.2
light hydrocarbons	3.0	3.9	5.6	9.7	2.2

学会:

- 三枝俊亮、第37回分子シミュレーション討論会 (2023)
- 三枝俊亮、第38回分子シミュレーション討論会 (2024)
- 三枝俊亮、日本コンピュータ化学会2024春季年会 (2024)

論文:

- 三枝俊亮, J. Comput. Chem. Jpn., 23, 65-67 (2024).
- S. Mieda, ACS Omega, 10, 5973-5980 (2025).